新聞資訊

什么是活細(xì)胞成像?
了解復(fù)雜且快速變化的細(xì)胞動力學(xué)是深入探索生物進程的重要一步。因此,現(xiàn)代生命科學(xué)研究越來越需要關(guān)注于在分子水平上實時發(fā)生的生理事件。
觀察和分析活細(xì)胞時面臨的挑戰(zhàn)
在固定細(xì)胞或組織中,獲取樣品“分子狀態(tài)”的信息已是一項艱巨的任務(wù)。如果需要獲取實時信息,就必須盡可能在實驗過程中保證細(xì)胞自然地運行生理機制,因此將加大實驗的困難程度。此外,由于很多生理過程的持續(xù)時間僅有幾秒甚至幾毫秒(例如細(xì)胞內(nèi)離子水平的變化),必須在相對較短的時間內(nèi)采集大量信息。
滿足這些挑戰(zhàn)性需求的一種方法是采用被統(tǒng)稱為活細(xì)胞成像的光學(xué)技術(shù)?;罴?xì)胞成像可研究活細(xì)胞中的實時動態(tài)生理過程,而非提供細(xì)胞當(dāng)前狀態(tài)的一幅“快照”。它把快照轉(zhuǎn)變成了電影。活細(xì)胞成像可提供單個細(xì)胞、細(xì)胞內(nèi)網(wǎng)絡(luò)(原位)甚至整個生物體(體內(nèi))中動態(tài)發(fā)生分子事件的空間和時間信息。這些特性讓活細(xì)胞成像成為了研究細(xì)胞生物學(xué)、癌癥、發(fā)育生物學(xué)和神經(jīng)科學(xué)中動態(tài)生理過程的必要技術(shù)。
近年來,電子學(xué)、光學(xué)和生物化學(xué)的迅速發(fā)展,使得科學(xué)家們更輕松的實現(xiàn)活細(xì)胞成像。如今的活細(xì)胞成像方法使用優(yōu)化的顯微鏡、專用光源、高速相機、高靈敏度探測器和特異性的熒光標(biāo)記物,可同時提供技術(shù)成熟且仍具有創(chuàng)新性的全套解決方案,滿足在分子水平上對單細(xì)胞或整個細(xì)胞網(wǎng)絡(luò)進行實時研究的挑戰(zhàn)性需求。
活細(xì)胞成像中的常見問題
活細(xì)胞成像通常適用于培養(yǎng)的細(xì)胞系(例如HEK細(xì)胞、HeLa細(xì)胞)、原代細(xì)胞(例如皮膚細(xì)胞、神經(jīng)細(xì)胞)、急性制備的組織切片(例如腦切片)或整個器官或生物體。因為細(xì)胞被帶出其原本“自然”的培養(yǎng)環(huán)境并會受到光毒性的影響,所以在實驗過程中的首要任務(wù)是保持細(xì)胞的健康狀態(tài)。
光毒性
使用熒光染料進行活細(xì)胞成像的另一個問題是:激光或高強度電弧放電燈的入射光會損害細(xì)胞,即所謂的光毒性。光毒性主要在合成熒光染料被激發(fā)時發(fā)生。熒光染料被激發(fā)后,它們將與分子氧發(fā)生反應(yīng)并產(chǎn)生自由基。為避免光毒性,必須選擇盡可能低的光強度和盡可能短的激發(fā)持續(xù)時間,以將入射高能光劑量保持在盡可能低的水平。在實驗設(shè)計過程中,還必須考慮實驗的持續(xù)時間。長時間實驗中,通常不需要高幀速率。因此,圖像采集的周期頻率通??梢詮睦缑棵?0多幀降低到每秒1幀甚至更低。這將顯著降低樣品上的入射光劑量,從而大幅降低光毒性。
對于低強度熒光信號成像,可以考慮更改圖像采集條件設(shè)置,比如在大多數(shù)情況下,通過將相機功能用作像素合并或提高增益,甚至使用特殊的高靈敏度相機(例如EM-CCD相機)進行成像。這樣可以在不增加激發(fā)持續(xù)時間或光強度的情況下實現(xiàn)更好的信噪比和信號質(zhì)量,而這兩者都會導(dǎo)致更高的光毒性。此外,選擇具有長激發(fā)波長的熒光基團也可降低光毒性,因為與具有短激發(fā)波長的熒光基團相比,傳遞給樣品的能量更低。熒光蛋白(例如綠色熒光蛋白(GFP))的光敏位點位于被多肽包膜覆蓋的蛋白質(zhì)內(nèi)部,因此通常沒有光毒性
焦面漂移
此外,在長時間的活細(xì)胞成像實驗中,很可能發(fā)生焦面漂移的問題,可以使用配備有軟件或硬件控制自動對焦的成像儀器來避免這種情況。
用于活細(xì)胞成像的方法
可應(yīng)用于活細(xì)胞成像的寬場和共聚焦顯微技術(shù)的范圍也非常廣泛。通常,使用復(fù)式顯微鏡和反差對比方法(例如相差和微分干涉相差(DIC)),隨時間觀察細(xì)胞的生長、聚集或運動過程。此外,通常使用體視顯微鏡或宏觀鏡對大型標(biāo)本(例如發(fā)育中的斑馬魚胚胎)進行延時成像。在過去數(shù)十年中,先進熒光技術(shù)變得越來越重要。共聚焦顯微鏡應(yīng)用的迅速增加,使生物研究的視角從平面向三維立體轉(zhuǎn)變。